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Abstract This study quantifies the impact of meteorological variability on the Community Multiscale
Air Quality (CMAQ) model‐simulated particulate matter of aerodynamic diameter 2.5 μm or smaller
(particulate matter 2.5 [PM2.5]) over the contiguous United States (CONUS). The meteorological variability
is represented using the Short‐Range Ensemble Forecast (SREF) produced operationally by the National
Oceanic and Atmospheric Administration. A hierarchical cluster analysis technique is applied to
down‐select a subset of the SREF members that objectively accounts for the overall meteorological forecast
variability of SREF. Three SREF members are selected to drive off‐line CMAQ simulations during January,
April, July, and October 2016. Changes in emissions, vertical diffusion, and aerosol processes due to
meteorological variability dominate changes in aerosol mass concentrations over 55‐73% of the domain
except in July when dry deposition dominates emissions and aerosol processes. Weather Research and
Forecasting‐Advanced Research WRF (WRF‐ARW) simulations reproduced the variability of surface
temperature very well but overestimated the 10‐mwind speed, precipitation, and at some sites the planetary
boundary layer height. Averaged over CONUS, CMAQ simulations driven by all three meteorological
configurations capture the observed daytime low and nighttime high PM2.5 mass concentrations but
underestimated the observed concentrations likely due to faster advection and higher wet deposition in the
model. PM2.5 levels across the three simulations agreed well during daytime but showed larger variability
during nighttime due to dominance of aerosol, clouds, and advection processes in nighttime. The
meteorology‐induced variability in PM2.5 is estimated to be 0.08–24 μg/m3 over the CONUS with larger
variability over the eastern United States.

1. Introduction

Particulate matter of aerodynamic diameter 2.5 μmor smaller (particulate matter 2.5 [PM2.5]), also known as
fine particulate matter, is a criteria pollutant because it adversely affects human health. Exposure to elevated
levels of PM2.5 can cause premature deaths through respiratory or cardiovascular diseases (Burnett et al.,
2014; Fann et al., 2012) and tremendous social and economic costs. For instance, air pollution is reported
to have caused 160,000 premature deaths in 2010 in the United States with a total economic loss of about
$175 billion (Im et al., 2018). Another study estimated that from 2002 to 2011 the total cost of air pollution
exposure from energy production in the United States is on the order of $130–170 billion annually (Jaramillo
& Muller, 2016). The exposure to air pollution levels even below the U.S. Environmental Protection Agency
(EPA) defined National Ambient Air Quality Standards (NAAQS) is not safe and reported to adversely affect
health of men, underrepresented groups, and people with Medicaid eligibility (Di et al., 2017).

To mitigate these effects of air pollution, air quality managers across the United States analyze air quality
and weather observations, numerical weather prediction (NWP) model output, and PM2.5 guidance from
the National Air Quality Forecasting Capability (NAQFC) to warn the public of anticipated air pollution
episodes. This information allows the public to take actions (e.g., reduce outdoor activities) to limit their
exposure to harmful pollutants. However, the lack of knowledge of uncertainties associated with forecasted
PM2.5 values makes it difficult for the air quality managers to assess the value of NAQFC products in their
decision‐making process.

The NAQFC predictions are based on an off‐line chemistry transport model called the Community
Multiscale Air Quality (CMAQ) model (Byun & Schere, 2006; Lee et al., 2017), which simulates the spatial
and temporal distribution of air pollutants using advanced numerical techniques, sophisticated algorithms
to process emission inventories, and by parameterizing a variety of atmospheric physical and chemical
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processes. Several factors contribute to uncertainties in air quality simulations, including errors in initial and
boundary conditions, inadequate understanding of some of the air quality‐related processes, inaccurate
emission inventories, meteorological biases, and numerical approximations. Improving initialization of
CMAQ via assimilation of satellite aerosol optical depth retrievals is already shown to significantly improve
the accuracy of the PM2.5 forecasts (Kumar et al., 2019; Tang et al., 2017). Here we focus on understanding
the uncertainties in NAQFC PM2.5 forecasts due to meteorological errors and biases.

Daily variation in meteorology is reported to explain up to 50% of the PM2.5 variability over the contiguous
United States (CONUS; Tai et al., 2010). Increase in PM2.5 over the United States during 1994–2012 due to
changes in weather parameters was shown to cause additional 14,700 premature deaths (Jhun et al.,
2015). Dawson et al. (2007) reported that PM2.5 mass concentrations are sensitive to perturbations in
meteorological parameters (temperature, wind speed, absolute humidity, mixing height, cloud cover, and
precipitation) and changed considerably (20–170 ng/m3) over the eastern United States in response to per-
turbations in meteorological parameters.

In this study, the meteorological errors and biases are represented using the Short‐Range Ensemble Forecast
(SREF; Du et al., 2015) produced by the National Oceanic and Atmospheric Administration's (NOAA's)
National Centers for Environmental Prediction (NCEP). SREF is based on two widely used NWP models,
namely, the Nonhydrostatic Multiscale Model on the B grid (NMMB) and the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2008). SREF is used to assure that meteorological configura-
tions employed here can be easily replicated in the NAQFC operations. More importantly, unlike other
NCEP ensemble products that either do not extend to the NAQFC forecast lead time of 48 hr or do not have
any existing preprocessor for coupling their meteorological fields with CMAQ, SREF is the only NCEP
meteorological ensemble product at the time this study was conducted that was technically suitable to use.

The paper is organized as follows. Section 2 describes the SREF and a hierarchical cluster analysis (HCA)
technique that is employed to down‐select the SREF members that capture the overall variability embodied
in the SREF. This down‐selection is important to reduce the computational cost of our experiments. The
CMAQ modeling configuration and the observations used to evaluate the performance of CMAQ are
described in section 3. The meteorological variability and its impact on PM2.5 mass concentrations as well
as different processes controlling PM2.5 are assessed in section 4, and the results are summarized in
section 5.

2. Methodology
2.1. Description of NCEP SREF

The NCEP SREF system, version 7.0, contains 26 ensemble members, evenly divided between the Advanced
Research WRF (WRF‐ARW) and the NOAA Environmental Modeling System (NEMS) NMMB models. For
each set of 13 NMB and 13 ARW members, a control member is associated with 12 perturbed members
(Tables S1 and S2 in the supporting information). The SREF is a multianalysis, multiphysics ensemble that
obtains the initial conditions (ICs) from one of three sources: the North American Model (NAM) Data
Assimilation System (NDAS; Rogers et al., 2009; Kleist et al., 2009), the NCEP Global Forecast System
(GFS; Environmental Modeling Center, 2003), and the Rapid Refresh model (RAP; Benjamin et al., 2016).
IC perturbations are generated via blending of the SREF and Global Ensemble Forecast System (GEFS;
Wei et al., 2006), with perturbations of opposite sign for the “positive” (“p”) and “negative” (“n”) members.

The lateral boundary conditions (LBCs) are provided by the GFS for the control members and by a GEFS
member for all other members. While there are some random perturbations that affect each SREF member
owing to the GEFS LBCs and IC perturbations, all SREF ensemble members are statistically distinguishable
from one another because each member has a unique suite of physics parameterization schemes (Fraley
et al., 2010). This distinguishability allows us to meaningfully apply statistical postprocessing and verifica-
tion techniques that assess the performance of specific ensemble members over a long period of time.

Unfortunately, we could not use all the SREF members to drive CMAQ in this study for two reasons. First,
theMeteorology‐Chemistry Interface Processor (MCIP; Otte & Pleim, 2010), which is used to prepare CMAQ
meteorological inputs, can process only ARW output, and thus, we had to exclude NMMB‐based SREF
members from our analysis. Second, the Ferrier (Rogers et al., 2001) and Ferrier‐Aligo (Aligo et al., 2014)
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microphysics schemes do not output enough microphysical species to be
compatible with CMAQ, so we exclude arw_n1, arw_n2, arw_p4, and
arw_n5 from our analysis as well (Table S2). Therefore, we perform our
analysis on the remaining nine ARWmembers of SREF (arw_ctl, arw_p1,
arw_p2, arw_n3, arw_p3, arw_n4, arw_p5, arw_n6, and arw_p6).

2.2. Hierarchical Cluster Analysis (HCA)

We apply an inexpensive statistical postprocessing technique called HCA
to the nine SREF ARW members mentioned above to reduce the compu-
tational burden and to objectively determine a subset of the SREF ARW
members, which objectively account for the meteorological forecast varia-
bility. HCA has been used previously to group similar NWP (Alhamed
et al., 2002; Johnson et al., 2011; Lee, 2012; Lee et al., 2016; Yussouf
et al., 2004) and air quality ensemble (Solazzo et al., 2013) members
together. We follow Lee et al. (2016) for ensemble down‐selection.

HCA is an iterative algorithm where each member starts as a singleton
cluster. For each iteration, two closest clusters are determined using a dis-
tance metric and are then merged. Ward's minimum variance method is
used as distance metric (Wilks, 2006) here, which combines the two clus-
ters (say r and s) with the smallest sum of squares of the distances between
each point in the cluster and the cluster centroid. This distance metric d(r,
s) is defined as

d r; sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nrns
nr þ nsð Þ

s
xr−xsk k2 (1)

where ‖‖2 is the Euclidean distance, xr and xs are the respective cluster centroids, and nr and ns are the num-
bers of elements in the respective clusters. The algorithm iterates until all the data vectors have been merged
to form one overarching cluster.

We define each data vector as the normalized forecast errors (forecast minus observation) of a single ensem-
ble member. Normalizing the forecast errors enables us to cluster on multiple variables together. The fore-
cast variables we considered are 2‐m temperature, 2‐m dewpoint, 10‐m wind speed, and 10‐m wind
direction, at forecast lead times of 9, 21, 33, and 45 hr (corresponding to valid times of 0000 and 1200
UTC). The forecast errors for each SREF member are calculated using the ensemble‐stat tool of the Model
Evaluation Tools (MET) (Brown et al., 2016; www.dtcenter.org/met/users) toolkit. METAR observations
from the Meteorological Assimilation Data Ingest System (MADIS; https://madis.ncep.noaa.gov) are used
as ground truth.

We perform the HCA both on each month of SREF data individually (January, April, July, and October
2016) and on all 4 months combined. After running the HCA algorithm, we compute the centroid of each
cluster and order all the members of each cluster according to their proximity to the cluster centroid. We
identify the member closest to its cluster centroid as the most representative member of that cluster.

For each time period, Table 1 lists this ordered membership of each cluster, and the dendrogram for the
all‐months' time period is seen in Figure 1 (dendrograms for the single‐month periods are not shown for
brevity). Dendrograms provide visual presentation of clustering of data vectors. The lower the height on
the dendrogram at which two subclusters merge, the more similar they are and vice versa. There are
consistently three distinct clusters in this nine‐member subset of SREF, and from Table 1, the membership
of each cluster is the same for every time period except January only. Based on this, we conclude that
seasonal variability in the clustering of these members is not of primary importance (at least for 2016),
and thus, we focus on the HCA results from the all‐month time period. Therefore, the SREF members that
we select to drive our own ARW/CMAQ miniensemble are arw_ctl, arw_p1, and arw_p2.

Interestingly, the control member (arw_ctl) is closest to its cluster centroid in every time period. This makes
sense statistically, as one would expect that a control member would be closer to the center of a forecast

Table 1
Clustering Results on the Nine ARWMembers of SREFWith Physics Schemes
Compatible With MCIP/CMAQ

Time period Cluster members (by proximity to centroid)

January 2016 1: arw_p5, arw_n3, arw_n6
2: arw_ctl, arw_n4, arw_p2
3: arw_p3, arw_p1, arw_p6

April 2016 1: arw_p2, arw_n4, arw_n6
2: arw_ctl, arw_p5, arw_p3
3: arw_p1, arw_n3, arw_p6

July 2016 1: arw_p2, arw_n6, arw_n4
2: arw_ctl, arw_p5, arw_p3
3: arw_p1, arw_n3, arw_p6

October 2016 1: arw_n4, arw_p2, arw_n6
2: arw_ctl, arw_p5, arw_p3
3: arw_n3, arw_p6, arw_p1

All months 1: arw_p2, arw_n4, arw_n6
2: arw_ctl, arw_p5, arw_p3
3: arw_p1, arw_n3, arw_p6

Note. ARW, Advanced Research WRF; CMAQ, Community Multiscale
Air Quality; MCIP, Meteorology‐Chemistry Interface Processor; SREF,
Short‐Range Ensemble Forecast; WRF, Weather Research and
Forecasting.
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distribution on average, when the other members have perturbations added to and subtracted from the
control member.

To examine how much of the 26‐member SREF variability was captured, we use the standard method of
binned spread‐skill plots to examine the statistical consistency of our miniensemble. Ideally, the binned
spread‐skill should fall along the 1:1 line, indicating that the ensemble spread can predict the ensemble error
(or skill). To evaluate the statistical consistency of our miniensemble, 48‐hr forecasts for the 15‐day periods
in January and July 2016 were used. Binned spread‐skill plots are generated for 2‐m temperature (Figure S1
in the supporting information), 2‐m dew point temperature (Figure S2), 10‐m wind speed (Figure S3), and
10‐m wind direction (Figure S4), for this “3mem” ensemble, the “all_sref (26 members),” and “arw_only
(13 members)” direct SREF output. These results show that the statistical consistency of the 3mem ensemble
is comparable to both the “all_sref” and the “arw_only”members for all these meteorological variables. For
10‐mwind speed, however (Figure S3), the 3mem ensemble is even more reliable (i.e., closer to the 1:1 line)
than the other ensembles for the January test days. Similar results are obtained for this analysis with full
month output for January, April, July, and October 2016. These results demonstrate that the 3mem
ensemble is an adequate subset of the full SREF ensemble in terms of statistical consistency and is generally
representative of the full SREF ensemble reliability.

3. Model Configuration Details
3.1. WRF‐ARW

The native SREF output stored on the NCEP servers does not include a large number of variables required by
MCIP/CMAQ, so we need to run our own “SREF‐like” WRF‐ARW simulations to generate the necessary
meteorological parameters. Thus, we perform three WRF‐ARW simulations with version 3.8.1 correspond-
ing to our miniensemble. Our 481 × 369 domain covers the CONUS at a grid spacing of 12 km × 12 km with
43 vertical levels, a model top of 50 hPa, and a time step of 20 s.

The physics configuration for all three ARW members correspond to the physics schemes from the respec-
tive SREF members as summarized in Table 2. The ICs and LBCs come from SREF members arw_ctl
(RAP/GFS), arw_p1 (RAP/GEFS 13), and arw_p2 (RAP/GEFS 15). We slightly modified some other physics
options from SREF, including reducing the radiation scheme call frequency from 60 to 10 min, turning on

Figure 1. Dendrogram for all months when clustering on the 9 Advanced Research Weather Research and Forecasting
(ARW) members of Short‐Range Ensemble Forecast (SREF) with physics compatible with Meteorology‐Chemistry
Interface Processor/Community Multiscale Air Quality (MCIP/CMAQ).
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the interpolation of shortwave radiation between radiation calls based on solar zenith angle (swint_opt=1),
turning on a topographic correction for surface winds (topo_wind=1; Jiménez & Dudhia, 2012] for the
Yonsei University (YSU) planetary boundary layer scheme (Hong et al., 2006), and turning on sixth‐order
horizontal diffusion (HDIF). For this study, we analyze and produce 48 hr of model forecasts initialized
once daily at 0300 UTC in January, April, July, and October 2016, in order to get a fair representation of
performance through all four seasons.

3.2. CMAQ

The CMAQ domain replicates the NAQFC domain settings and is defined on a Lambert conformal projec-
tion centered at (40°N, 97°W) with 442 × 265 grid points, 42 vertical levels from the surface to ~20 km,
and a horizontal grid spacing of 12 km × 12 km. The meteorological fields from the WRF‐ARW simulation
are mapped to the CMAQ domain using the MCIP. The Carbon Bond mechanism‐2005 (CB‐05) with an
updated toluene chemistry (Whitten et al., 2010) is selected to represent the gas‐phase chemistry. CMAQ
uses three lognormal modes, namely, Aitken, accumulation, and coarse modes to represent aerosols
(Binkowski & Roselle, 2003). The AERO6 aerosol module of CMAQ that includes specification of trace
metals (Appel et al., 2013; Reff et al., 2009) and source‐specific ratios of organic mass to organic carbon
(Simon & Bhave, 2012) is employed here. The ISORROPIA thermodynamic equilibrium module (version
II) is used to calculate thermodynamic equilibrium of inorganic aerosols in the Aitken and accumulation
modes (Fountoukis & Nenes, 2007). The gas‐particle partitioning between the gas phase and coarse mode
particles is treated dynamically (Kelly et al., 2010), and the secondary organic aerosol (SOA) formation is
estimated using Carlton et al. (2010). Lateral chemical boundary conditions for CMAQ are obtained from
monthly median concentrations simulated by GEOS‐Chem (Tang et al., 2009). The vertical diffusion
(VDIF) in CMAQ follows the Asymmetric Convective Model version 2 (ACM2; Pleim, 2007), while the
advection and diffusion scheme follows Byun (1999).

The anthropogenic emissions of trace gases and aerosols from the EPA National Emission Inventory repre-
sentative of the year 2011 are mapped to the CMAQ domain using the Sparse Matrix Operator Kernel
Emissions (SMOKE). SMOKE is run with the three meteorological simulations to generate meteorology‐
dependent emissions for each configuration. The Biogenic Emissions Inventory System (BEIS) version
3.13 is used to estimate the emissions of volatile organic compounds from vegetation and nitric oxide
(NO) emissions from the soil. The U.S. Bluesky Modeling Framework (https://www.airfire.org/bluesky/),
which uses the NOAA Hazard Mapping System to geographically locate and estimate the strength of
wildfires, is used to represent biomass burning emissions of aerosols and trace gases within the model
domain. Anthropogenic and biomass burning emissions are processed via SMOKE, while biogenic emissions
are calculated online within CMAQ.

In addition to the standard model output, we also track the contribution of direct emissions (EMIS), VDIF,
HDIF, aerosol processes (AERO), cloud processes (CLDS), horizontal advection (HADV), vertical advection
(ZADV), and dry deposition (DDEP) to hourly Aitken (AMASSI), accumulation (AMASSJ), and coarse
(AMASSK) mode aerosol mass concentrations in each of the simulations using the Integrate Process Rate
(IPR) analysis capability of CMAQ. AMASSI, AMASSJ, and AMASSK represent the family of aerosols
belonging to the three aerosol modes used in CMAQ and are defined to reduce the computational storage
requirements as follows:

Table 2
Proposed Miniensemble If We Cluster on Only the Nine ARW Members of SREF With Physics Schemes Compatible With MCIP/CMAQ

Mem. IC/LBC Conv. PBL Sfc. Lay. MP LW Rad. SW Rad. LSM

1 arw_ctl KF YSU MM5 WSM6 RRTMG RRTMG Noah
2 arw_p1 Grell MYNN MYNN Thompson RRTM Goddard Noah
3 arw_p2 BMJ MYJ MYJ Thompson RRTMG RRTMG Noah

Note. ARW, Advanced Research WRF; CMAQ, Community Multiscale Air Quality; IC, initial condition; LBC, lateral boundary condition; LSM, land surface
model; LW, longwave; MCIP, Meteorology‐Chemistry Interface Processor; MYJ, Mellor‐Yamada‐Janjic; MYNN, Moller‐Yamada‐Nakanishi‐Niino; PBL, plane-
tary boundary layer; RRTMG, Rapid Radiative Transfer Model for General Circulation Models; SREF, Short‐Range Ensemble Forecast; SW, shortwave; WRF,
Weather Research and Forecasting; WSM6, WRF Single‐Moment 6‐Class; YSU, Yonsei University.
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AMASSI ¼ ASO4Iþ ANO3Iþ ANH4Iþ ANAIþ ACLIþ AOTHRIþ APOCIþ AECIþ APNCOMI (2)

AMASSJ ¼ AALK1Jþ AALK2Jþ AXYL1Jþ AXYL2Jþ AXYL3Jþ ATOL1Jþ ATOL2Jþ ATOL3J
þ ABNZ1Jþ ABNZ2Jþ ABNZ3Jþ ATRP1Jþ ATRP2Jþ AISO1Jþ AISO2Jþ AISO3J
þ ASQTJþ APAH1Jþ APAH2Jþ APAH3Jþ AOLGAJþ AOLGBJþ AORGCJþ ASO4J
þ ANO3Jþ ANH4Jþ ANAJþ ACLJþ AMGJþ AKJþ ACAJþ AFEJþ AALJþ ASIJ
þ ATIJþ AMNJþ AOTHRJþ APOCJþ AECJþ APNCOMJ (3)

AMASSK ¼ ASO4Kþ ANO3Kþ ANH4Kþ ACLKþ ASEACATþ ASOILþ ACORS (4)

The geometric mean diameter for mass is 0.03, 0.3, and 6 μm for AMASSI, AMASSJ, and AMASSK, respec-
tively. The CMAQ forecast on the first day of each month used idealized ICs for all the chemical species. The
maximum and minimum synchronization time steps were set to 720 and 60 s, respectively. The ICs for all
other CMAQ forecasts were based on the previous day's CMAQ run. The first 5 days of both WRF and
CMAQ output are discarded in each month as spin‐up. Hourly CMAQ output was saved for analysis.

3.3. Evaluation Data Sets

Surface PM2.5 mass concentrations are obtained from the EPA's Air Quality System (AQS) Data Mart
(https://www3.epa.gov/ttn/amtic/quality.html) for evaluation of CMAQ‐simulated PM2.5. All the PM2.5

measurements collected under the national ambient air monitoring program are available for download at
the AQS Data Mart. These measurements are performed by different tribal, state, and local agencies and
undergo several quality control tests before their archival on the AQS Data Mart. For direct comparison of
model output with the observations, the CMAQ utility program combine is used to convert CMAQ aerosol
chemical composition into PM2.5 concentrations. The resulting model output is then spatially and
temporally collocated with the observed values using another CMAQ utility program called sitecmp. The
sharp‐cut PM2.5 inlet method (Jiang et al., 2006) is used to estimate the contribution of each mode
(Aitken, accumulation, and coarse) to PM2.5 concentrations in CMAQ. While the EPA measured PM2.5 at
more than 1,600 sites across the United States during the 4 months of 2016 studied here, we include only
those measurements in our analysis that had at least 50% data availability, that is, 360 hourly measurements
during each month. The number of sites used in the analysis are 660, 669, 657, and 681 in January, April,
July, and October 2016, respectively.

In addition, we also used in situ observations of 2‐m temperature, 10‐mwind speed, and planetary boundary
layer height (PBLH), along with satellite retrievals of precipitation to evaluate the WRF meteorological
simulations. The temperature and wind speed data are obtained from the EPA (https://aqs.epa.gov/aqs-
web/airdata/download_files.html#Raw), which compiles the meteorological observations reported by the
National Weather Service and uses those to account for interannual meteorological variability in air quality
trends (https://www3.epa.gov/scram001/metobsdata.htm). The Tropical Rainfall Measuring Mission
(TRMM) precipitation retrievals at the spatial resolution of 0.25° × 0.25° and temporal resolution of 3 hr cor-
responding to the algorithm 3B42 version 7 are used (https://trmm.jpl.nasa.gov/). For the PBLH, we have
used the Integrated Global Radiosonde Archive (IGRA) derived estimates (https://www.ncdc.noaa.gov/
data‐access/weather‐balloon/integrated‐global‐radiosonde‐archive).

4. Results
4.1. Meteorological Evaluation and Variability

The model‐simulated values are calculated at the observation sites via bilinear interpolation from the four
grid points surrounding the site and paired data are used for the verification. For evaluation against the
TRMM data, we mapped the WRF‐simulated precipitation fields at the TRMM resolution (0.25° × 0.25°).
Figure 2 compares 48‐hr WRF forecasts of 2‐m temperature for all the three members, that is, arw_ctl,
arw_p1, and arw_p2 against the observations averaged over 837 sites in the model domain (see Figure 3
for site locations). The diurnal cycle of the 2‐m temperature is reproduced very well by WRF in all the three
configurations. However, we notice a cold bias in all the members during January except for a few hours in
the second day of the arw_p1 forecast. Arw_p1 shows the best agreement with the observations in January,
while arw_ctl and arw_p2 show similar performance. During April, July, and October, all themembers show
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a warm bias during the afternoon hours and the magnitude of the nighttime cold bias is smaller than that in
January. Arw_ctl even shows a slight warm bias on the second night (lead times 24‐32) in July.

Figures 3 shows the maps of correlation coefficient (top panels), mean bias (middle panels), and the root‐
mean‐square error (RMSE; bottom panel) in 2‐m temperature for the three simulations in January 2016.
Similar maps for April, July, and October are shown in Figures S5‐S7. The correlation coefficient is much
higher in the eastern United States than the western United States for all three configurations in January
and October, similar between the eastern and western United States in April, and higher in the western
United States in July. The correlation coefficient is greater than 0.75 for all the members at most of the sites,
indicating that all WRF configurations capture the variability in 2‐m temperature very well. Themean bias is
within ±2K at most of the sites for all the simulations. The mean bias is smaller in arw_p1 compared to

Figure 2. Evaluation of 48‐hr Weather Research and Forecasting (WRF) forecasts of 2‐m temperature against observa-
tions averaged over all the sites in our model domain during (a) January, (b) April, (c) July, and (d) October 2016 as a
function of the lead time. All lead times are in UTC.

Figure 3. Spatial distributions of correlation coefficient (CC; top panel), mean bias (MB; middle panel), and root‐mean‐
square error (RMSE; bottom panel) in 2‐m temperature simulated by arw_ctl, arw_p1, and arw_p2 in January 2016.
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arw_ctl and arw_p2 in January. All the members show similar mean bias values in other months. The RMSE
values are less than 4 K in all the members during all the months except at some sites in Colorado, Wyoming,
Utah, North Dakota, and parts of north‐eastern United States, particularly in January and October. Similar
to the mean bias, RMSE is also lower in arw_p1 in January.

Figure 4 compares 48‐hrWRF forecasts of 10‐mwind speed for the threeWRF simulations against the obser-
vations averaged over 760 sites in the model domain (see Figure 5 for site locations). In contrast to 2‐m tem-
perature, we find large differences among the threemembers for 10‐mwind speed. During all themonths, all
the members capture the diurnal patterns but overestimate the 10‐m wind speed, except for the arw_ctl
simulation during the afternoon hours. While arw_p1 and arw_p2 overestimate the wind speed much more
than arw_ctl, they better capture the diurnal cycle compared to arw_ctl. The highest overestimation of 10‐m

Figure 4. Evaluation of 48‐hr Weather Research and Forecasting (WRF) forecasts of 10‐m wind speed against observa-
tions averaged over all the sites in our model domain during (a) January, (b) April, (c) July, and (d) October 2016 as a
function of the lead time. All lead times are in UTC.

Figure 5. Spatial distribution of correlation coefficient (CC; top panel), mean bias (MB; middle panel), and root‐mean‐
square error (RMSE; bottom panel) in 10‐m wind speed simulated by arw_ctl, arw_p1, and arw_p2 in January 2016.
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wind speed is seen in arw_p2 simulations. Figures 5 show the maps of correlation coefficient (top panels),
mean bias (middle panels), and the RMSE (bottom panel) in 10‐mwind speed simulated by arw_ctl, arw_p1,
and arw_p2 in January 2016. Similar maps for April, July, and October 2016 are shown in Figures S8‐S10.
The correlation coefficients for 10‐m wind speed are much lower compared to 2‐m temperature in all the
months and WRF simulations, but the correlation coefficient is higher over the eastern United States, espe-
cially in January, April, and October. TheWRF simulations overestimate the wind speeds at most of the sites
throughout the United States in the arw_p1 and arw_p2 simulations, but there are many sites in the western
United States where arw_ctl underestimates the wind speed. The spatial distribution of RMSE is similar to
the MB with the arw_ctl simulations showing the lowest RMSE values and arw_p2 showing the highest
RMSE values.

The spatial distributions of the TRMM retrieved 24‐hr accumulated precipitation are compared against
WRF‐simulated accumulated precipitation for the first and second days of forecasts for all three configura-
tions in January (Figure 6), April (Figure S11), July (Figure 7), and October (Figure S12) 2016, respectively.
First‐ and second‐ day forecasts are evaluated separately to understand changes in model performance with
time. During all the months, all the WRF simulations show moderate skill (0.54 < correlation coefficient
< 0.74) in reproducing the spatial structure and the seasonal cycle of precipitation. However, all the
members significantly overestimate the amount of precipitation. The model skill deteriorates slightly from

Figure 6. Spatial distribution of Tropical Rainfall Measuring Mission (TRMM)‐retrieved and Weather Research and Forecasting (WRF)‐simulated accumulation
precipitation for the first (top panel) and second (bottom panel) days of the forecasts in January 2016. The spatial correlation coefficient and mean bias in WRF
simulated precipitation for each member are also shown along the abscissa of arw_ctl, arw_p1, and arw_p2 panels.

Figure 7. Same as Figure 6 but for July 2016.
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the first to second day as indicated by a small decrease in the correlation coefficient. Arw_ctl shows the
highest mean bias and variability in both the first‐ and second‐day precipitation forecasts.

Figure 8 compares the PBLH simulated by arw_ctl, arw_p1, and arw_p2 with the IGRA‐derived estimates.
Most of the IGRA‐derived PBLH estimates are available for 0000 UTC, and thus, this comparison is just a
snapshot of the model performance at 0000 UTC. We have combined the data for all the 4 months because
the IGRA estimates are relatively sparse in time and comparison for individual months do not provide for a
statistically meaningful comparison. We notice that arw_p1 mostly overestimates the IGRA PBLH, while
arw_ctl and arw_p2 show a mixed behavior. Averaged PBL heights in both IGRA and WRF are higher over
the western United States and lower over the eastern United States because 0000 UTC corresponds to late
afternoon hours over the western United States and evening hours over the eastern United States. The
difference between WRF and IGRA PBLH varies between ‐80% and 107%, but the differences are within
±50% at about 89%, 83%, and 82% of the sites for arw_ctl, arw_p1, and arw_p2, respectively.

To understand themeteorological variability among the threeWRF simulations in nonobservation areas, the
monthly averaged spatial distributions of arw_ctl‐simulated 2‐m temperature and water vapor mixing ratios,
10‐m wind speed, and PBLH are analyzed (Figures S13‐S16). Average differences between arw_ctl and
arw_p1 and arw_ctl and arw_p2 are also analyzed (Figures S13‐S16). Arw_p1 and arw_p2 show mixed
deviation from the arw_ctl as they simulate lower temperatures in some parts of the domain (e.g., western
United States in winter for arw_p2) and higher temperatures in other parts (e.g., midwestern and
northeastern United States and Canada in arw_p1). The largest deviations in surface temperature are seen
during winter with values ranging from ‐5.8 to 3.9 K. Domain‐wide average ± standard deviation values
of arw_ctl‐simulated 2‐m temperature during January, April, July, and October 2016 are estimated to be
277±12 K, 286±8 K, 296±5 K, and 289±7 K, respectively. Domain‐wide‐averaged values of arw_ctl‐arw_p1
are estimated to be ‐0.3±1.3 K, ‐0.1±0.4 K, ‐0.4±0.4 K, and ‐0.01±0.4 K, respectively, while the corresponding
values of arw_ctl ‐ arw_p2 are 0.2±0.8 K, ‐0.2±0.4 K, ‐0.5±0.6 K, and ‐0.1±0.4 K, respectively.

Figure 8. Comparison of Integrated Global Radiosonde Archive (IGRA)‐derived planetary boundary layer height (PBLH) with arw_ctl, arw_p1, and arw_p2 simu-
lated PBLH values. Percentage difference between Weather Research and Forecasting (WRF) and IGRA PBLH is shown in the rightmost panel.
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The arw_ctl‐simulated 2‐m water vapor mixing ratios generally decrease over land in the arw_p1 and
arw_p2 simulations, except slight increases in some areas during winter. The largest deviations over land
are seen in arw_p1 during summer, with differences ranging between ‐8.0 and 1.5 g/kg. Domain‐wide
average ± standard deviation values of arw_ctl‐simulated 2‐m water vapor mixing ratios during January,
April, July, and October 2016 are estimated to be 5.4±3.7 g/kg, 7.0±3.7 g/kg, 12.5±4.5 g/kg, and 9.0±4.3
g/kg, respectively. Domain‐wide mean of arw_ctl ‐ arw_p1 are estimated to be ‐0.2±0.4 g/kg, ‐0.05±0.4
g/kg, ‐0.6±0.7 g/kg, and 0.02±0.5 g/kg, respectively, while the corresponding values of arw_ctl ‐ arw_p2
are ‐0.3±0.6 g/kg, ‐0.6±0.5 g/kg, ‐0.8±0.5 g/kg, and ‐0.7±0.7 g/kg, respectively.

Not surprisingly, the arw_ctl‐simulated 10‐m wind speed shows higher values over the ocean and lower
values over the land. We note faster winds over land in arw_p1 and arw_p2 compared to arw_ctl except over
the mountainous regions in the western United States. The deviations in arw_p2 are slightly larger than
arw_p1. Domain‐wide average values of arw_ctl‐simulated 10‐m wind speed during January, April, July,
and October 2016 are estimated to be 5.0±2.6 m/s, 4.7±2.2 m/s, 3.8±1.8 m/s, and 4.6±2.4 m/s, respectively.
Domain‐wide mean of arw_ctl‐arw_p1 are estimated to be 0.3±1.2 m/s, ‐0.6±1.2 m/s, ‐0.4±1.0 m/s, and
‐0.3±1.2 m/s, respectively, while the corresponding values of arw_ctl‐arw_p2 are ‐0.7±1.3 m/s, ‐0.9±1.4 m/s,
‐0.8±1.2 m/s, and ‐0.7±1.3 m/s, respectively.

The seasonal variations in PBLH are similar to temperature, with the highest values in summer and the
lowest values in winter. Both arw_p1 and arw_p2 simulate a shallower PBL in some parts of the domain
(e.g., western United States in April for arw_p2) and a deeper PBL in other parts (e.g., midwestern and
northeastern United States and Canada in winter under arw_p1). Domain‐wide average values of arw_ctl‐
simulated PBLH during January, April, July, and October of 2016 are estimated to be 454±292 m,
664±263 m, 723±325 m, and 576±269 m, respectively. Domain‐wide mean of arw_ctl‐arw_p1 are estimated
to be ‐90±106 m, ‐62±142 m, ‐35±131 m, and ‐48±100 m, respectively, while the corresponding values of
arw_ctl‐arw_p2 are ‐41±246 m, ‐45±203 m, 51±198 m, and 42±180 m, respectively.

In summary, none of the members is consistently better than the others in comparison to the observations,
but all the simulations show moderate to very good performance for different meteorological variables
providing confidence in using these WRF simulations for driving CMAQ simulations. Large bias in the wind
speed especially in arw_p1 and arw_p2 can be reduced via assimilation of wind speed observations, but we
have not assimilated any observations here to be consistent with the operational SREF output.

4.2. Effect of Meteorological Variability on Processes Controlling PM2.5

This section discusses how different processes controlling PM2.5 respond to the variability in meteorology
and identifies which process contributes the most to changes in PM2.5 due to changes in meteorology. The
monthly averaged AMASSJ tendency due to EMIS, VDIF, AERO, CLDS, ADV (HADV + ZADV), and
DDEP during January, April, July, and October 2016 in arw_ctl are depicted in the left panels of
Figures 9–12, respectively. We focus on AMASSJ because accumulation mode aerosols contribute more than
80% to PM2.5 mass concentrations. The contribution of HDIF is an order of magnitude smaller than other
processes and thus is not shown. Average changes in AMASSJ tendencies in arw_p1 (middle panel,
Figures 9–12)‐ and arw_p2 (right panel, Figures 9–12)‐driven simulations compared to the arw_ctl simula-
tion are also analyzed. Positive values in the left panels of Figures 9–12 indicate that the process is a source
for AMASSJ and negative values mean that it is a sink.

As expected, emissions represent the most important source of PM2.5 everywhere in the domain during all
the months. Meteorological variability leads to larger changes in the emissions over the oceanic regions
likely because of dependency of sea‐salt emissions on the winds. To examine how sea‐salt emissions change
between different configurations, we performed a 48‐hr CMAQ simulation on 6 January 2016. This 48‐hr
simulation is used to understand the differences in wind speed and sea‐salt emissions among the three
simulations. We did not save sea‐salt emissions for all the simulations due to storage limitations. Table S3
shows the sea‐salt emissions for different species in the three meteorological configurations. The correlation
coefficient between the 10‐m wind speed and sea‐salt emissions are in the range of 0.82‐0.85 for all the
species presented in Table S3. Average 10‐m wind speed in arw_ctl, arw_p1, and arw_p2 for this 48‐hr
simulation period are estimated to be 6.95 ± 3.37 m/s, 6.77 ± 3.10 m/s, and 6.64 ± 3.24 m/s, respectively.
The emissions of all the species are the highest in arw_ctl because it has the highest mean wind speed
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and variability (standard deviation). Significant changes in the emissions are also discerned in several inland
areas, especially in the urban areas during January and April, and over the southeastern and central United
States in July and October in both the arw_p1 and arw_p2 simulations compared to arw_ctl simulation. We
notice the largest changes in emissions over the land areas during October.

The VDIF acts as a sink for aerosols over most parts of the domain during January, April, and October
because it transports the emissions out of the surface layer. However, VDIF acts a source for accumulation
mode aerosol particles over the southeastern United States and parts of the northeastern United States, the
Four Corners region, and Canada in July, indicating vertical transport of aerosols from the model layers
aloft. Relative to arw_ctl, VDIF in arw_p1 and arw_p2 leads to mixed changes in AMASSJ tendencies with
the majority of grid boxes experiencing a stronger diffusion in arw_p1 and arw_p2 as represented by blue
colors in the middle and right panels of Figures 9–12. However, some parts of the United States especially
the northeastern United States in January, the southeastern United States in July, and the central,

Figure 9. (left panel) Monthly averaged contribution of emissions (EMIS), vertical diffusion (VDIF), aerosol processes
(AERO), cloud processes (CLDS), advection (ADV), and dry deposition (DDEP) to hourly AMASSJ for January 2016 in
arw_ctl‐driven Community Multiscale Air Quality (CMAQ) simulation. The changes in the contribution of these
processes in arw_p1 and arw_p2‐driven CMAQ simulations relative to arw_ctl‐driven CMAQ simulation are shown in the
middle and right panels.
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southeastern, and parts of the western United States in October experience much stronger VDIF in the
arw_ctl simulations.

AERO have a larger effect on AMASSJ in January (over the eastern United States) and July (over the
southeastern United States) compared to April and October. Meteorological changes in arw_p1 and arw_p2
compared to arw_ctl affect the AEROmore over the eastern United States and in the oceanic regions. CLDS
also have a larger impact on AMASSJ over the oceanic regions, eastern United States, and parts of the Pacific
Northwest. The strongest changes in AMASSJ due to AERO over the oceanic regions are seen in January
when the strength of CLDS decreases in the arw_p1 simulation relative to arw_ctl but increases in the
arw_p2 simulation. Similar behavior of CLDS is observed in April and to some extent in October.

The advection process leads to smaller absolute changes (within ±0.2 μg/m3) in AMASSJ compared to other
processes. The DDEP always acts as a sink for aerosols and thus is always negative. The removal of aerosols
via DDEP unsurprisingly increases from January through April to July and then decreases again in October.
Similarly, the changes in DDEP in the arw_p1 and arw_p2 simulations compared to the arw_ctl simulations
are also the highest in July. Interestingly, the DDEP tends to become weaker in the northeastern United
States and stronger in the southeastern United States in both arw_p1 and arw_p2 simulations during all
the months, except in July when DDEP tends to be weaker even in the southeastern United States.

Figure 10. Same as Figure 9 but for April 2016.
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Table 3 shows the monthly domain average and standard deviation (representing the spatial variability) of
AMASSJ tendency due to AERO, CLDS, DDEP, EMIS, VDIF, HADV, and ZADV for January, April, July,
and October 2016 in the three simulations. On average monthly domain‐wide scale, emissions, and CLDS
act as sources of AMASSJ, while all other processes act as sinks of AMASSJ in all the simulations except
ZADV in January and VDIF in arw_p1 in July. AERO, CLDS, EMIS, and VDIF diffusion have a larger effect
on AMASSJ than DDEP, HADV, HDIF, and ZADV. The highest values for EMIS and VDIF are higher than
those for other processes by a factor of 10.

We have also estimated correlation coefficient between arw_ctl and arw_p1 (r1) and arw_ctl and arw_p2 (r2)
to understand if meteorological variability changes the spatial distribution of AMASSJ tendency due to
different processes. As expected, we see strong to perfect correlation (0.97–1) between the three simulations
for EMIS as meteorological variations do not affect the location of emission sources. Lower correlation
coefficients for HADV and ZADV (0.81‐0.89) than VDIF (0.95‐1) indicate that meteorological variability
perturbs spatial structure of advection processes more than diffusion. The meteorological variability
substantially changes the spatial structure of AERO and CLDS as indicated by moderate correlation coeffi-
cient values in the range of 0.52‐0.76. This is consistent with the large heterogeneity in surface temperature
distribution as shown in Figure S13.

Figure 11. Same as Figure 9 but for July 2016.
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We also identify which process contributes the most to the changes in AMASSJ tendency when the meteor-
ological configuration is changed from arw_ctl to arw_p1 and arw_p2 (Figure 13). The corresponding
percentage of grid points dominated by each process is shown in Table 4. The changes in AMASSJ tendency
due to changes in meteorological configuration over the oceanic regions is dominated by EMIS (orange
color), VDIF (dark green color), AERO (red color), and CLDS (light green color). However, the spatial
heterogeneity is larger over the oceanic regions when arw_ctl is changed to arw_p2. HADV (brown color)
and ZADV (pink color) advection contributes the most to the changes in AMASSJ tendency over the moun-
tainous regions in the western United States in all the months. Both the advection processes dominate 6‐12%
of the total number of grid points in different months. HDIF does not dominate any grid point in any month.
During January, changes in AMASSJ tendency in most parts of the midwest, northeast, and southeast
United States are dominated by AERO followed by DDEP and VDIF. Across the domain, VDIF (27‐29%)
and AERO (20‐26%) dominate the maximum number of grid points in January. VDIF dominates most of
the areas in eastern parts of domain in April, and thus, the percentage of VDIF‐dominated grid points
increases to 41%. AERO‐dominated grid points decrease to 10‐12% in April, but EMIS‐dominated grid points
increase to 12‐19%. DDEP becomes the second most important process after VDIF in July as DDEP‐
dominated grid points increase to 20‐23%. In October, EMIS ranks as the second most important process
with a percentage of 20‐24%, while all other processes remain at less than 10%.

Figure 12. Same as Figure 9 but for October 2016.
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To examine the effect of meteorological variability on aerosol chemical composition, the percentage contri-
bution of monthly averaged sulfate (SO4), nitrate (NO3), ammonium (NH4), elemental carbon, organic car-
bon (OC), soil, and all other aerosol chemical components to monthly averaged PM2.5 mass concentrations
over the entire domain in arw_ctl, arw_p1, and arw_p2 configurations are examined (Figure 14). The
contribution of each aerosol chemical component to PM2.5 mass concentration is estimated using the
sharp‐cut PM2.5 inlet method (Jiang et al., 2006). During all the months, SO4 dominates the PM2.5 chemical
composition in all the three configurations with the highest contribution in arw_p2 simulation. The percen-
tage contribution of NO3 in July is less than 5%, while it is around or more than 10% in other months in all
the configurations. Similar decrease is seen in NH4 concentrations in July. In contrast, the percentage con-
tribution of OC and others increase in July compared to the other months. The contribution of elemental
carbon remains constant at around 3% in all the months and simulations, and soil shows larger variability
among the three simulations in October. The meteorological induced variability among the simulations is
generally within ±5% on a monthly average scale.

In summary, the meteorological variability considerably affects the strength of all processes that control the
spatial and temporal distribution of aerosol mass concentrations. The meteorology‐induced changes in
PM2.5 over 55‐73% of the domain are dominated by emissions, VDIF, and AERO except in July when
DDEP dominates over 20‐23% of the domain. Meteorological variability leads to the largest spatial variability
in aerosol and CLDS.

4.3. Variability in PM2.5 Forecasts

The maps of monthly averaged PM2.5 mass concentrations over the model domain in January, April, July,
and October 2016 in arw_ctl, arw_p1, and arw_p2 configurations are shown in Figure 15. We see higher
PM2.5 mass concentrations over the eastern United States. Arw_p1 shows the highest concentrations in most
parts of the domain in January except for some areas in the northeastern part of the domain where arw_p2
shows the highest concentrations. PM2.5 mass concentrations decrease in April and July relative to January
especially over the eastern United States and increase again in October. In contrast, PM2.5 mass concentra-
tions increase over the western United States in July likely because of the wildfires.

Table 3
Monthly Average and Standard Deviation in Tendency of AMASSJ Due to AERO, CLDS, DDEP, EMIS, VDIF, HADV, and ZADV for January, April, July, and
October 2016

Mem. AERO CLDS DDEP EMIS VDIF HADV ZADV

Jan 2016 arw_ctl ‐0.09±0.33 0.08±0.30 ‐0.006±0.09 0.09±1.21 ‐0.07±1.14 ‐0.001±0.11 0.0006±0.11
arw_p1 ‐0.09±0.27 0.08±0.24 ‐0.008±0.08 0.08±1.17 ‐0.07±1.10 ‐0.003±0.13 0.0007±0.13
arw_p2 ‐0.09±0.30 0.08±0.24 ‐0.009±0.08 0.09±1.17 ‐0.07±1.10 ‐0.003±0.14 0.0007±0.13
Min, Max ‐27.5, 9.6 ‐2.0, 25.9 ‐24.3, 0 0, 281.2 ‐276.3, 19.5 ‐23.9, 9.8 ‐11.0,10.0
r1, r2 0.76, 0.73 0.74, 0.67 0.68, 0.68 1, 1 0.99, 0.99 0.82, 0.81 0.84, 0.83

Apr 2016 arw_ctl ‐0.08±0.28 0.07±0.26 ‐0.009±0.12 0.06±0.84 ‐0.04±0.77 ‐0.002±0.09 ‐0.0009±0.09
arw_p1 ‐0.08±0.21 0.06±0.19 ‐0.012±0.10 0.05±0.80 ‐0.03±0.72 ‐0.002±0.11 ‐0.0019±0.09
arw_p2 ‐0.06±0.18 0.05±0.14 ‐0.012±0.11 0.06±0.82 ‐0.03±0.74 ‐0.002±0.11 ‐0.0015±0.09
Min, Max ‐21.5, 5.0 ‐0.7, 21.7 ‐31.1, 0 0, 186.8 ‐182.2, 30.6 ‐20.0, 7.0 ‐8.5, 5.9
r1, r2 0.73, 0.72 0.70, 0.67 0.66, 0.65 0.99, 1 0.99, 1 0.89, 0.89 0.88, 0.88

Jul 2016 arw_ctl ‐0.07±0.33 0.06±0.31 ‐0.034±0.43 0.05±0.69 ‐0.007±0.71 ‐0.003±0.13 ‐0.0016±0.13
arw_p1 ‐0.07±0.22 0.06±0.21 ‐0.039±0.42 0.04±0.67 0.002±0.67 ‐0.003±0.13 ‐0.0027±0.12
arw_p2 ‐0.04±0.19 0.03±0.16 ‐0.030±0.34 0.05±0.69 ‐0.011±0.67 ‐0.004±0.12 ‐0.0021±0.11
Min, Max ‐18.2, 10.0 ‐3.4, 18.2 ‐60.0, 0 0.0, 175.7 ‐171.6, 57.9 ‐23.3, 8.7 ‐11.8, 10.2
r1, r2 0.68, 0.59 0.64, 0.52 0.86, 0.85 0.99, 1 0.95, 1 0.86, 0.85 0.86, 0.85

Oct 2016 arw_ctl ‐0.10±0.40 0.09±0.38 ‐0.009±0.15 0.08±0.88 ‐0.053±0.80 ‐0.003±0.12 ‐0.0002±0.11
arw_p1 ‐0.11±0.29 0.09±0.28 ‐0.011±0.08 0.07±0.86 ‐0.047±0.78 ‐0.003±0.14 ‐0.0011±0.13
arw_p2 ‐0.08±0.25 0.07±0.21 ‐0.012±0.10 0.08±0.90 ‐0.049±0.80 ‐0.004±0.14 ‐0.0009±0.14
Min, Max ‐45.6, 4.3 ‐2.6, 45.0 ‐41.0, 0 0, 177.4 ‐173.7, 39.2 ‐12.8, 5.9 ‐5.8, 8.2
r1, r2 0.66, 0.68 0.61, 0.63 0.53, 0.52 0.97, 0.98 0.96, 0.96 0.87, 0.88 0.88, 0.88

Note. All values are in μg · m‐3 · hr‐1. Average horizontal diffusion values are in the range of 10‐7 to 10‐8 μg · m‐3 · hr‐1 and thus are not shown here. Standard
deviation represents the spatial variability across the domain. Minimum and maximum values across the three simulations are also shown along with spatial
correlation between arw_ctl and arw_p1 (r1) and arw_ctl and arw_p2 (r2). AERO, aerosol processes; CLDS, cloud processes; DDEP, dry deposition; EMIS,
emissions; HADV, horizontal advection; VDIF, vertical diffusion; ZADV, vertical advection.
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Figure 13. Maps showing which process contribute the most to changes in AMASSJ tendency when meteorological
configuration is changed from arw_ctl to arw_p1 (left panel) and arw_p2 (right panel) in January, April, July, and
October 2016.

Table 4
Percentage of Grid Points Dominated by Different Processes Contributing to the Changes in AMASSJ Tendency Due to
Changes in Meteorological Configuration From arw_ctl to arw_p1 and arw_p2

January 2016 April 2016 July 2016 October 2016

Process arw_p1 arw_p2 arw_p1 arw_p2 arw_p1 arw_p2 arw_p1 arw_p2

AERO 20 26 10 12 18 16 9 12
CLDS 5 9 4 8 4 7 6 9
DDEP 9 9 11 10 23 20 9 9
EMIS 14 7 19 12 8 9 24 20
VDIF 29 27 41 41 34 31 33 34
HDIF 0 0 0 0 0 0 0 0
HADV 12 12 8 9 6 9 9 8
ZADV 10 11 7 8 7 9 9 8

Note. AERO, aerosol processes; CLDS, cloud processes; DDEP, dry deposition; EMIS, emissions; HADV, horizontal
advection; HDIF, horizontal diffusion; VDIF, vertical diffusion; ZADV, vertical advection.
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Figure 14. Percentage contribution of monthly averaged sulfate (SO4), nitrate (NO3), ammonium (NH4), elemental
carbon (EC), organic carbon (OC), soil, and all other aerosol chemical components to monthly averaged particulate
matter 2.5 (PM2.5) mass concentrations over the entire domain in arw_ctl, arw_p1, and arw_p2 configurations during
(a) January, (b) April, (c) July, and (d) October 2016.

Figure 15. Spatial distribution of monthly averaged particulate matter 2.5 (PM2.5) mass concentrations over the model
domain in January, April, July, and October 2016 in arw_ctl, arw_p1, and arw_p2 configurations.
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The observed and modeled 48‐hr PM2.5 forecasts averaged over all the AirNOW sites during the months of
January, April, July, and October 2016 are compared in Figure 16 for all three simulations. CMAQ consis-
tently underestimates the observed PM2.5 levels during all the months in all the three simulations except
for a few hours in arw_p1 and arw_ctl during January. Both the observations and model show higher night-
time PM2.5 levels and lower daytime levels. Among the three CMAQ simulations, arw_p2 shows the lowest
PM2.5 mass concentrations during nighttime in all the months. Nighttime PM2.5 mass concentrations are the
highest in arw_p1 during January and October and in arw_ctl during April and July.

The three simulations show larger variability during nighttime and agree well during daytime. The diurnal
variability, that is, the difference between maximum and minimum PM2.5 levels, also decreases in both the
model and observations from January through April to July but increases again in October (Table 5). The
diurnal variability in arw_p2 is smaller than the observations in January and October but higher in April
and similar in July. Both arw_ctl and arw_p1 show a larger diurnal variability than the observations in all
the months.

Figure 16. Spatial distribution of Environmental Protection Agency (EPA) AirNOW sites used for evaluation of
Community Multiscale Air Quality (CMAQ) meteorology‐based ensemble members during January, April, July, and
October 2016 (left panel). The comparison of observed and modeled 48‐hr particulate matter 2.5 (PM2.5) forecasts
averaged over all the sites in the four months studied here. The standard deviation in average observed values range from
4.5 to 12.4 μg/m3 and those in the average CMAQ value range from 2.5 to 17.0 μg/m3. Standard deviation in the
average values is not shown for brevity. Note the different ordinate axis range for PM2.5 plots. The dashed and dotted lines
in the right panel enclose the time periods used for calculation of day and night meteorological ensemble variability.
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To understand why nighttime PM2.5 mass concentrations exhibit higher
variability than the daytime variability, we analyze how the contribu-
tion of different processes to AMASSJ tendency changes from the day
(the area enclosed by dashed lines on the right panels in Figure 16) to
night periods (the area enclosed by dotted lines on the right panels in
Figure 16). The changes in the contribution of a process to changes in
AMASSJ from daytime to nighttime are estimated using the following
equation:

AMASSJp ¼ AMASSJp;night−AMASSJp;day (5)

where p represents the processes AERO, CLDS, DDEP, EMIS, HADV, HDIF, VDIF, and ZADV and
AMASSJp;night and AMASSJp;day represent the average AMASSJ tendencies due to process p during night
and day periods, respectively. The overbars denote the averages over the day and night periods.

Figure 17 depicts AMASSJ averaged over all the sites for all the processes during January, April, July, and
October 2016. Emissions and VDIF have the strongest influence on AMASSJ except during July when the
role of DDEP is larger compared to VDIF. During January, emissions increase from daytime to nighttime
but decrease in other months. The amount of changes in emissions from daytime to nighttime is nearly
the same in all the three simulations, except during October when the nighttime decrease in emissions in
arw_ctl simulation is smaller. The variability in average AMASSJ tendency due to emissions in arw_p1
and arw_p2 relative to arw_ctl is less than 3.1% in all the months. However, the variability in VDIF among
different simulations is higher (up to 19%) especially in April and July. While aerosol, clouds, and advection
processes have a smaller absolute contribution to average AMASSJ tendency, there is larger variability (up to
300%) in these processes among different simulations. The day and night variability in DDEP among the
three simulations during day and night periods ranges from ‐6 to 114% in July 2016.

At each site, we have also identified the process that leads to the highest changes in AMASSJ tendency dur-
ing day and night periods when arw_ctl is changed to arw_p1 and arw_p2 to understand how the dominance
of different processes changes between the day and night periods. Percentage of sites dominated by each pro-
cess during the day and night periods are shown in Table 6. The number of sites dominated by AERO, CLDS,
HADV, and ZADV increase from day to night periods except during January when AERO dominate the
same number of sites in day and night periods. In contrast, the number of sites dominated by emissions,
VDIF, and DDEP decrease from day to night periods.

Table 5
Diurnal Variability of PM2.5 Levels in the Observations and Three
CMAQ Members

Month Obs arw_ctl arw_p1 arw_p2

January 3.4 5.0 5.5 2.7
April 1.6 3.8 3.4 2.1
July 1.2 2.8 3.1 1.3
October 2.5 3.1 3.8 1.7

Note. CMAQ, Community Multiscale Air Quality; PM2.5, particulate mat-
ter 2.5.

Figure 17. Monthly average values of AMASSJ for (a) January, (b) April, (c) July, and (d) October 2016.

10.1029/2018JD029637Journal of Geophysical Research: Atmospheres

KUMAR ET AL. 5688



The performance of three CMAQ simulations is assessed compared to the
observations in terms of correlation coefficient, mean bias, and RMSE in
Figure 18. Data from all the sites at each lead time have been used to
calculate these statistical parameters. The correlation coefficient is lower
than 0.4 in all the months for all the simulations. The arw_p1 and arw_p2
shows slightly higher correlation coefficients during January and October
than the arw_ctl simulation. All three simulations show nearly similar
performance in terms of the correlation coefficient during April and
July. Similar to the mean PM2.5 mass concentrations, the mean bias and
RMSE also show larger diurnal variability in January. The mean bias
ranges from ‐5 to 2 μg/m3 in January, ‐3.5 to 0 μg/m3 in April and
October, and ‐5 to ‐1 μg/m3 in July. The RMSE ranges from 5 to 13
μg/m3, except during January when the nighttime values exceed 15‐20
μg/m3 in the arw_ctl and arw_p1 simulations.

Finally, we estimate the PM2.5 variability across the three CMAQ simula-
tions at each observation site using equation (6) to identify the regions
that are affected the most by the meteorological variability.

PM2:5 variability ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

t¼1

1
3
∑
3

m¼1
PM2:5

t
−PMm;t

2:5

� �2
� �s

(6)

where t = 1, 2, … , N represents the CMAQ forecast lead times across all the days, PM2:5
t
represent the PM2.5

mass concentrations averaged over the three CMAQ simulations (m= 1, 2, 3) at time t, andPMm;t
2:5 represents

the PM2.5 mass concentration for the CMAQ simulation corresponding to the memberm. PM2.5 variability is
estimated separately for day and night periods to examine whether or not the larger nighttime variability
seen in the average picture presented above prevails across all the sites.

The PM2.5 variability for both the daytime and nighttime periods in all the 4 months is shown in Figure 19.
PM2.5 variability varies from as low as 0.08 μg/m3 to as high as 24 μg/m3 across all the months. Consistent
with the average picture, most of the sites show larger nighttime variability. PM2.5 variability is higher in
the eastern United States both during the daytime and nighttime, but many sites in the western United
States also show variability similar to the eastern United States during nighttime. The northeastern states

Table 6
Percentage of Grid Points Dominated by Different Processes Contributing to
the Changes in AMASSJ Tendency Due to Changes in Meteorological
Configuration From arw_ctl to arw_p1 and arw_p2 at All the Observation
Sites in January, April, July, and October 2016

January 2016 April 2016 July 2016 October 2016

Process Day Night Day Night Day Night Day Night

AERO 32 32 9 22 3 11 5 19
CLDS 6 8 4 12 1 9 4 11
DDEP 13 3 19 4 44 11 16 4
EMIS 3 2 4 1 3 1 18 9
HADV 12 26 10 23 11 29 10 21
VDIF 29 16 48 21 29 16 40 22
ZADV 6 13 5 17 8 23 9 15

Note. Horizontal diffusion does not dominate at any site either during the
day or night period and thus is not shown. AERO, aerosol processes;
CLDS, cloud processes; DDEP, dry deposition; EMIS, emissions; HADV,
horizontal advection; VDIF, vertical diffusion; ZADV, vertical advection.

Figure 18. Time variation in correlation coefficient, mean bias (MB), and the root‐mean‐square error (RMSE) estimated
using collocated model‐observation pairs from all the Environmental Protection Agency (EPA) AirNOW sites for each
ensemble member during January, April, July, and October 2016.
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show the highest variability in all the months except during July when southeastern states also show varia-
bility similar to northeastern states. To understand when the daytime and nighttime PM2.5 variability is the
most different at state level, we estimated the difference in PM2.5 variability by subtracting the daytime
values from the corresponding nighttime values at each site and averaging the difference variability over
all the sites belonging to individual states. This difference in PM2.5 variability is shown in bottom panel of
Figure 19. We find that Massachusetts, Missouri, New Hampshire, New Jersey, and New York show the lar-
gest average difference (>4 μg/m3) in PM2.5 variability during January.

Figure 19. Particulate matter 2.5 (PM2.5) variability for the day and night periods in January, April, July, and October
2016 are shown for each AirNOW site in the top and middle panels, respectively. The bottom panel shows the differ-
ence between day and night variability for each state.

Figure 20. Community Multiscale Air Quality (CMAQ) 48‐hr forecasts of monthly averaged particulate matter 2.5
(PM2.5) mass concentrations for urban, suburban, and rural sites for January, April, July, and October 2016.
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To understand how model performance vary with site type (urban, suburban, and rural), we compared the
48‐hr CMAQ forecasts of PM2.5 mass concentrations for urban, suburban, and rural sites for January, April,
July, and October 2016 (Figure 20). Not surprisingly, we find that PM2.5 mass concentrations are the highest
at the urban sites followed by the suburban and rural sites. PM2.5 simulated using the arw_p2meteorological
configuration is the lowest at all types of the sites in all the months likely because of the largest overestima-
tion of wind speed in arw_p2 configuration. Both arw_ctl and arw_p1 yield similar concentrations in April
and July, but arw_p1 simulates higher concentration at suburban and rural sites in October, and at all types
of sites in January. Similar to the average picture (Figure 16), we see the largest variability among the three
simulations in January. The overestimation seen in nighttime hours of January in arw_p1 and arw_ctl
(Figure 16) is mostly from the overestimation at the urban sites with a very small contribution from the
suburban sites. All CMAQ simulations underestimate the observed PM2.5 at rural sites in January. At all
types of sites, the nighttime variability is higher than the daytime variability. At the rural sites, the model
shows the largest underestimation of PM2.5, which can partially be attributed to the use of static LBCs in
our configuration.

5. Summary

This study examines the impact of meteorological variability on the simulations of PM2.5 mass concentra-
tions over the CONUS. The NOAA SREF system is used to represent the meteorological variability in the
CMAQ simulations of PM2.5. To reduce the computational burden, an HCA technique is applied to
down‐select a subset of the SREF members that objectively represents the overall meteorological forecast
variability of SREF. Three SREF members, namely, arw_ctl, arw_p1, and arw_p2, are selected to drive
CMAQ simulations. These three members are found to be an adequate subset of the full SREF ensemble
in terms of having comparable statistical consistency. Replicating the configuration of the three selected
members, we run our own “SREF‐like” 48‐hr WRF‐ARW forecasts that are then processed through the
MCIP for use in CMAQ simulations. The processed meteorological fields are also fed to SMOKE to capture
meteorology‐induced changes in emissions input to CMAQ. CMAQ 48‐hr forecasts are initialized daily at
0300 UTC throughout the months of January, April, July, and October 2016 to understand the impact of
meteorological variability on PM2.5 simulations in each season.

The WRF‐ARW forecasts of 2‐m temperature, 10‐m wind speed, precipitation, and PBLH are evaluated
against in situ (EPA and IGRA) and satellite (TRMM) observations. All the WRF configurations simulate
the spatial and temporal variability of 2‐m temperature very well but overestimate 10‐m wind speed and
precipitation. All the WRF simulations overestimate PBLH at many sites as well. However, the PBLH
evaluation was limited only to later afternoon/evening hours. More comprehensive PBLH evaluation should
be performed for daytime hours as well to better understand the causes of daytime PM2.5 underprediction.
WRF‐ARW and CMAQ forecasts are analyzed to understand the effect of meteorological variability on
PM2.5 mass concentrations as well as different processes controlling PM2.5. Across the three simulations,
meteorological parameters (temperature, water vapor, wind speed, and PBLH) show mixed changes with
increases over some parts of the domain and decreases over others. The meteorological variability affects
all the processes that contribute to variability in PM2.5 mass concentrations, but meteorology‐induced
changes in accumulation mode aerosol mass concentration, that is, AMASSJ over 55‐73% of the domain,
are dominated by emissions, VDIF, and AERO except in July when DDEP dominates over 20‐23% of the
domain. We also find that meteorological variability leads to the largest spatial variability in aerosol and
CLDS followed by advection. In all seasons and configurations, SO4 dominates the PM2.5 chemical composi-
tion, but we also notice an increase in the contribution of OC in July.

Averaged over CONUS, CMAQ simulations driven by all three meteorological configurations underestimate
the observed PM2.5 mass concentrations with a good agreement between the simulated PM2.5 during
daytime and large variability during nighttime. All the CMAQ simulations show larger diurnal variability
in January and October, with arw_p1 and arw_ctl showing diurnal variability even larger than observations.
Process analysis for the selected day and night periods showed that changes in the strength of VDIF from day
to night plays an important role in determining the day to night increase in PM2.5 mass concentrations,
except during October when changes in both the emissions and VDIF are important. Our results show that
meteorological variability leads to variations of 0.08–24 PM2.5 μg/m3 over the CONUS, with the eastern
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United States showing larger variability compared to the western United States. The variability is similar
across the urban, suburban, and rural sites.

This study highlights the necessity of capturing meteorological variability in air quality (PM2.5) forecasting
over the CONUS. Uncertainties in other processes such as emissions, and inadequate representation of some
of the processes, for example, secondary aerosol formation, dry and wet deposition, and initial and boundary
conditions, can also lead to large variability in simulated PM2.5 mass concentrations. Future work will
combine the simulations presented here with additional CMAQ simulations designed to capture other
sources of major uncertainties, particularly emissions and SOA formation, to generate a novel dynamical
ensemble for probabilistic predictions of PM2.5 mass concentrations over the CONUS.
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